Sample Project Descriptions at Colorado State University and University of California, Berkeley

The 10-week summer program will be centered on engaging students in exciting and authentic research projects. Interns will be assigned specific research projects based on interest, level of prior preparation and challenge, and fit with faculty and graduate mentor research. The projects will allow interns to engage in advanced research that builds on concepts they may be familiar with, such as microscopes, interferometers, or Fourier Transformations, and will be designed to familiarize the interns with new concepts in optics, lasers, advanced light sources, and extreme ultraviolet (EUV technology). The projects reflect the varied and complementary expertise of the EUV ERC faculty and examples are listed below by core capabilities of partnering research institution. The REU interns’ research activities will be aligned with the primary research thrusts of the Center.

High-Resolution Imaging of Plasmas Used for EUV Lithography (CSU Prof. Jorge Rocca)

The REU students will use a compact EUV laser to image the laser-created plasmas used in EUV lithography. The printing of the most advanced computer chips using EUV lithography requires the generation of high average power of EUV light at a wavelength of 13.5 nm. This light is produced by irradiating micro-droplets of tin with infrared laser pulses. Imaging with an EUV laser will allow researchers to gather information that cannot be obtained with longer wavelength probes. A unique compact EUV laser developed at CSU will be used by the students to generate EUV shadowgrams (Fig. 1) of the tin targets and rapidly evolving tin plasmas with nanosecond time resolution. This is a highly interdisciplinary project that will expose students to diverse areas of science and engineering, including optics, lasers, nanomaterials, and image processing. Students will learn about the engineering and operation of EUV lasers, EUV imaging, plasma diagnostics and image processing.

Interaction of Ultra-Intense Femtosecond Laser Pulses with Nanostructures: Generation of X-Ray and Gamma Ray Radiation for High Resolution Tomography of Dense Objects (CSU Prof. Reed Hollinger)

The REU students will experiment with the interaction of ultra-intense, ultrafast laser pulses with arrays of aligned nanostructures and optimize it for the generation of high energy photons to be able to acquire high resolution 3-D images of dense objects (Fig. 2). Nanowire arrays irradiated by laser pulses of ultra-high intensity can very efficiently absorb the laser light and convert it into intense picosecond flashes of high energy photons. CSU is fully equipped to conduct these experiments: it has one of the most powerful lasers in the world (ALEPH, 850 TW), a facility to grow nanowire arrays, and all the equipment necessary to perform high resolution x-ray tomography. Students will learn about high power lasers, intense laser/matter interactions, and X-ray imaging.
Attosecond Molecular Photophysics by EUV Light Spectroscopy (UCB Prof. Stephen Leone)

The photochemistry of complex molecules is a highly investigated field of study, in which processes such as ring opening, singlet-to-triplet transfer, and radical formation are ubiquitous. In this platform, small molecules are excited with strong field 800 nm or with ultraviolet pulses, and EUV attosecond pulses are used to probe the changes in orbital structure around carbon atoms in the molecule. An example is the Jahn-Teller distortion of methane cation (Fig. 3), in which it is found that upon abrupt ionization of methane a rapid geometry change occurs with concurrent coherent scissoring vibrational motion that is rapidly damped. The timescales for the dynamics are directly obtained in the few-femtosecond time domain. Students will learn about EUV spectroscopy, bond breaking, simulation of spectra, differential absorption, and molecular photophysics. Combining data analysis with simulation and global fitting provides important mathematical concepts for future careers.

Attosecond Carrier Relaxation and Coherent Phonon Dynamics via X-Ray Spectroscopy (UCB Prof. Stephen Leone)

REU students will participate in understanding atomic motion in solids, which is of interest for several areas of materials science, including photocatalysis and phase-change materials via x-ray spectroscopy. Following excitation by the broadband pump pulse, the Peierl’s distortion in a solid (a periodic distortion of the lattice in a one-dimensional crystal) such as antimony (Sb) is lifted, allowing for the well-reported coherent phonon motion to take place. The temporal resolution of attosecond pulses allows this oscillation to be traced from the earliest timescales following excitation (Fig. 4), which offers the opportunity to understand how initial and thermalized distributions of carriers interact to influence the overall lattice motion. The clear oscillations in the transient absorption signal are related to both the excited carrier population and to the motion of the lattice, which can be separated with suitable mathematical decomposition. Students learn about solid state dynamics from electronic carrier interactions, lattice motions, lasers and attosecond pulse generation, as well as important mathematical analysis methods.
Design, Fabrication and Diagnostics of interference Coatings for High Intensity Lasers (CSU Prof. Carmen Menoni)

In the most advanced high intensity lasers, multilayer dielectric coatings (Fig. 5) play a very important role in maximizing laser output power and pulse energy operation. In this project REU students will be involved in the growth and characterization of interference coatings for near infrared ultra-high intensity lasers that are used as drivers to generate intense beams of soft and hard x-rays. These advanced thin film structures consist of stacks of thin layers of transparent amorphous oxides that are deposited by ion beam sputtering. The REU student will participate in the design of these structures, in their synthesis, and in their optical characterization to determine their absorption loss at near infrared wavelengths and their stress. In particular, the REU student will be involved in the design and characterization of ultrabroad band coatings for ultrashort pulse lasers. The REU student will participate in experiments that will test the resistance of the coatings to laser damage.

Synthesis of Amorphous Oxides and Their Characterization (CSU Prof. Carmen Menoni)

Amorphous oxides are broadly used in many technologies. Thin layers of SiO2 are used as barriers in the most advanced semiconductor chips. In bulk form, SiO2 makes up the optical fibers in optical communication systems. With the addition of controlled impurities, SiO2 can be made into one of the strongest materials, which, in combination with being transparent, is used for screens in every mobile phone. The key to functionality is understanding how to control the material’s structural and mechanical properties by adding impurities. At CSU we have the capability to deposit metal oxide thin films by ion beam sputtering. We can deposit binary, ternary, and quaternary mixtures, for example TiO2 doped GeO2 (TiGeO) (Fig. 6). We study the optical, structural, and mechanical properties of the thin films using a variety of techniques with the goal to study how microstructure affects these properties. This project will offer the REU student opportunities to learn how to grow thin film metal oxides by sputtering. The REU student will learn how to characterize the materials by ellipsometry and spectrophotometry to analyze their optical properties. The REU student will be exposed to interferometry, spectroscopy methods, and x-ray diffraction to determine mechanical and structural properties of the thin films.
Solid-state high harmonic generation (sHHG) is an emerging nonlinear spectroscopy technique driven by strong-field interactions in a solid. In sHHG, an ultrafast pulsed driving field (typically mid-infrared, 3-4 µm wavelength) causes electron tunneling from the valence to conduction band in a semiconductor (Fig 13). The electron then oscillates in the conduction band under the driving field, resulting in harmonic emission from intraband currents, and then recombines resulting in an interband contribution to harmonic emission in the visible to NUV/VUV. The resulting harmonic spectrum imprints information of the electronic band structure and crystal symmetry of the material. An REU student will participate in sHHG measurements of single-crystal transition metal oxides and chalcogenides with the goal of developing a better understanding of how properties of the driving field, such as chirp, as well propagation through bulk materials affect the resulting harmonic spectrum. This project will enable accurate modeling of future sHHG measurements on bulk quantum materials for applications in energy conversion and quantum information. This will enable the REU student to gain experience in applications of ultrafast lasers and the theory of strong-field light-matter interactions in solids while helping to develop a new and promising spectroscopy technique.

Fig. 13: (a) Schematic mechanism of sHHG showing strong-field electron tunneling, intraband motion, and recombination resulting in emission of high harmonics. (b) Example sHHG anisotropy measurement of (110) oriented ZnTe. (c) Optical layout of the pump-probe sHHG spectrometer.